Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
BMC Emerg Med ; 23(1): 28, 2023 03 14.
Article in English | MEDLINE | ID: covidwho-2285110

ABSTRACT

INTRODUCTION: Bacterial infections are frequently seen in the emergency department (ED), but can be difficult to distinguish from viral infections and some non-infectious diseases. Common biomarkers such as c-reactive protein (CRP) and white blood cell (WBC) counts fail to aid in the differential diagnosis. Neutrophil CD64 (nCD64), an IgG receptor, is suggested to be more specific for bacterial infections. This study investigated if nCD64 can distinguish bacterial infections from other infectious and non-infectious diseases in the ED. METHODS: All COVID-19 suspected patients who visited the ED and for which a definitive diagnosis was made, were included. Blood was analyzed using an automated flow cytometer within 2 h after presentation. Patients were divided into a bacterial, viral, and non-infectious disease group. We determined the diagnostic value of nCD64 and compared this to those of CRP and WBC counts. RESULTS: Of the 291 patients presented at the ED, 182 patients were included with a definitive diagnosis (bacterial infection n = 78; viral infection n = 64; non-infectious disease n = 40). ROC-curves were plotted, with AUCs of 0.71 [95%CI: 0.64-0.79], 0.77 [0.69-0.84] and 0.64 [0.55-0.73] for nCD64, WBC counts and CRP, respectively. In the bacterial group, nCD64 MFI was significantly higher compared to the other groups (p < 0.01). A cut-off of 9.4 AU MFI for nCD64 corresponded with a positive predictive value of 1.00 (sensitivity of 0.27, a specificity of 1.00, and an NPV of 0.64). Furthermore, a diagnostic algorithm was constructed which can serve as an example of what a future biomarker prediction model could look like. CONCLUSION: For patients in the ED presenting with a suspected infection, nCD64 measured with automatic flow cytometry, has a high specificity and positive predictive value for diagnosing a bacterial infection. However, a low nCD64 cannot rule out a bacterial infection. For future purposes, nCD64 should be combined with additional tests to form an algorithm that adequately diagnoses infectious diseases.


Subject(s)
Bacterial Infections , COVID-19 , Noncommunicable Diseases , Humans , Neutrophils , Point-of-Care Systems , COVID-19/diagnosis , Biomarkers , Bacterial Infections/diagnosis , Bacterial Infections/metabolism , C-Reactive Protein/analysis , Emergency Service, Hospital , Diagnostic Tests, Routine , COVID-19 Testing
2.
Respir Med ; 207: 107094, 2023 02.
Article in English | MEDLINE | ID: covidwho-2211356

ABSTRACT

Eosinophil associated diseases have gained much attention recently because of the introduction of specific eosinophil targeted therapies. These diseases range from acute parasitic infections to chronic inflammatory diseases such as eosinophilic asthma. In eosinophilic asthma an increased eosinophil cell count in peripheral blood is the gold standard for determination of the pheno-/endotype and severity of disease. Despite a broad consensus there is concern on validity of this simple measurement, because the eosinophil compartment is far from homogenous. Multiple tissues harbour non-activated cells under homeostatic conditions and other tissues, normally devoid of eosinophils, become infested with these cells under inflammatory conditions. It will, therefore, be clear that eosinophils become differentially (pre)-activated at different tissue sites in homeostatic and inflammatory conditions. This complexity should be investigated in detail as it is 1) far from clear what the long-term side effects are that are caused by application of eosinophil targeted therapies in a "one size fits all" concept and 2) real-world data of eosinophil targeted therapies in asthma shows a broad variety in the treatment response. This review will focus on complex mechanisms of eosinophil activation in vivo to create a better view on the dynamics of the eosinophil compartment in health and disease both to prevent collateral damage caused by aberrant activation of eosinophils ánd to improve effectiveness of eosinophil targeted treatments.


Subject(s)
Asthma , Eosinophilia , Humans , Eosinophils , Asthma/drug therapy , Chronic Disease
3.
Frontiers in allergy ; 3, 2022.
Article in English | EuropePMC | ID: covidwho-1989666

ABSTRACT

Introduction Neutrophil and eosinophil activation and its relation to disease severity has been understudied in primary care patients with COVID-19. In this study, we investigated whether the neutrophil and eosinophil compartment were affected in primary care patients with COVID-19. Methods COVID-19 patients, aged ≥ 40 years with cardiovascular comorbidity presenting to the general practitioner with substantial symptoms, partaking in the COVIDSat@Home study between January and April 2021, were included. Blood was drawn during and 3 to 6 months after active COVID-19 disease and analyzed by automated flow cytometry, before and after stimulation with a formyl-peptide (fNLF). Mature neutrophil and eosinophil markers at both time points were compared to healthy controls. A questionnaire was conducted on disease symptoms during and 3 to 6 months after COVID-19 disease. Results The blood of 18 COVID-19 patients and 34 healthy controls was analyzed. During active COVID-19 disease, neutrophils showed reduced CD10 (p = 0.0360), increased CD11b (p = 0.0002) and decreased CD62L expression (p < 0.0001) compared to healthy controls. During active COVID-19 disease, fNLF stimulated neutrophils showed decreased CD10 levels (p < 0.0001). Three to six months after COVID-19 disease, unstimulated neutrophils showed lowered CD62L expression (p = 0.0003) and stimulated neutrophils had decreased CD10 expression (p = 0.0483) compared to healthy controls. Both (un)stimulated CD10 levels increased 3 to 6 months after active disease (p = 0.0120 and p < 0.0001, respectively) compared to during active disease. Eosinophil blood counts were reduced during active COVID-19 disease and increased 3 to 6 months after infection (p < 0.0001). During active COVID-19, eosinophils showed increased unstimulated CD11b (p = 0.0139) and decreased (un)stimulated CD62L expression (p = 0.0036 and p = 0.0156, respectively) compared to healthy controls. Three to six months after COVID-19 disease, (un)stimulated eosinophil CD62L expression was decreased (p = 0.0148 and p = 0.0063, respectively) and the percentage of CD11bbright cells was increased (p = 0.0083 and p = 0.0307, respectively) compared to healthy controls. Conclusion Automated flow cytometry analysis reveals specific mature neutrophil and eosinophil activation patterns in primary care patients with COVID-19 disease, during and 3 to 6 months after active disease. This suggests that the neutrophil and eosinophil compartment are long-term affected by COVID-19 in primary care patients. This indicates that these compartments may be involved in the pathogenesis of long COVID.

4.
Research and Practice in Thrombosis and Haemostasis ; 5(SUPPL 2), 2021.
Article in English | EMBASE | ID: covidwho-1508972

ABSTRACT

Background : Coronavirus disease of 2019 (COVID-19) is associated with a prothrombotic state and high incidence of thrombotic events (TE). Platelet hyperreactivity has been reported in COVID-19 patients and might contribute to TE development. Aims : To study platelet reactivity in hospitalized COVID-19 patients and to determine a possible association with the clinical outcomes thrombosis and all-cause mortality. Methods : 79 hospitalized COVID-19 patients were enrolled in this retrospective cohort study and provided blood samples in which platelet reactivity in response to stimulation with ADP and TRAP-6 was determined using flow cytometry. Clinical outcomes included thrombotic events, and all-cause mortality. Results : The incidence of TE in this study was 28% and all-cause mortality 16%. Patients that developed a TE were younger than patients that did not (median age of 55 versus 70 years;adjusted odds ratio (AOR), 0.96 per 1 year of age [95% CI, 0.92-1.00];P = 0.042). Furthermore, patients using preexisting thromboprophylaxis were less likely to develop a TE than patients that were not (18% versus 54%;adjusted odds ratio, 0.18 [95% CI, 0.04-0.82];P = 0.026). Conversely, having asthma strongly increased the risk on TE development (adjusted odds ratio, 6.4 [95% CI, 1.17-35.4];P = 0.032). No significant differences in baseline P-selectin expression or platelet reactivity were observed between the COVID-19 positive patients ( n = 79) and COVID-19 negative hospitalized control patients ( n = 24), nor between COVID-19 survivors or non-survivors. However, patients showed decreased platelet reactivity in response TRAP-6 following TE development compared to patients without TE. Conclusions : We observed an association between the use of preexisting thromboprophylaxis and a decreased risk of TE during COVID-19. This suggests that these therapies are beneficial for coping with COVID-19 associated hypercoagulability. This highlights the importance of patient therapy adherence. We observed lowered platelet reactivity after the development of TE, which might be attributed to platelet desensitization during thromboinflammation.

SELECTION OF CITATIONS
SEARCH DETAIL